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Phase diagram for the spin-1 ANNNI model using the method of 
ring recurrence 

M A S Saqit  and D S McKenziet 
f Department of Crystallography, Birkbeck College, Malet St, London WC1, U K  
$ Department of Physics, Kings College London, Strand, London WC2R 2LS, UK 

Received 7 June 1989 

Abstract. The ZD spin-1 A N ~ N I  model is studied using an iteratike method, the method 
of ring recurrence. The phase diagram is obtained numerically using matrices of order 9. 
We find the phase diagram to be generally similar to that of the ZD spin-4 A N N N I  model. 

1. Introduction 

The axial next-nearest-neighbour Ising ( A N N N I )  model (Elliott 1961) has been studied 
extensively in both two and three dimensions. It is one of the simplest statistical 
mechanical models to show complex modulated phases. A review of modulated 
structures in Ising models is given by Selke (1984). Recently Fuchs (1988) has used 
a modified transfer matrix method to analyse some properties of the two-dimensional 
A N N N I  model. The 2~ model is defined on the square lattice by nearest-neighbour 
couplings J along the x and z axes, and second-neighbour couplings J2 along the z 
axis as well (figure 1). Some time ago we described the application of a new iterative 
scheme, the method of ring recurrence, to the ZD spin-$ A N N N I  model (Saqi and 
McKenzie 1987). We showed that the method enabled the phase diagram to be obtained 
with minimal computational effort using low-order matrices. In the limiting case J2  = 0, 
the method gives the critical point as 1.551 < e x p ( J / k T ) <  1.554, which is in good 

L.. 
Figure I .  The twd-dimensional “ , - I  model. J and J ,  are ferromagnetic nearest-neigh- 
bour couplings. J 2  is the antirerramagnetic second-neighbour coupling along the z axis. 
We take J = J ,  i n  this study. 
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agreement with the exact value (1.553). The method also allowed a direct calculation 
of the wavevector in the incommensurate phase. The phase diagram we obtained was 
in general agreement with other results (Villain and Bak 1981, Beale er a1 1985). The 
phase diagram displays ferromagnetic (F), paramagnetic (P) ,  incommensurate ( I )  and 
++-- (or (2)) phases on varying the temperature and the ratio J J J .  The (2) phase 
consists of two rows of ‘up’ spins, followed by two rows of ‘down’ spins along the z 
direction in the lattice. We observed the existence of the incommensurate phase for 
values of - J z / J ,  less than 0.5. That is, as the temperature is lowered for - J 1 / J ,  -0.49 
the phase changes from paramagnetic to incommensurate, back to paramagnetic and 
then ferromagnetic. Here we present the phase diagram of a ZD spin-1 A N N N I  model. 
The method of ring recurrence enables us to obtain the phase boundaries using matrices 
of order 9 and we find that this ‘re-entrant’ effect is much more apparent. 

2. Methodology 

We now give a description of the method of ring recurrence (McKenzie 1981, see also 
Saqi and McKenzie 1987). We consider first the general formalism, then the application 
to the spin-f king model on the square lattice. We show how the ideas are readily 
extended to deal with competing interaction models-the spin-; A N N  N I  model (Saqi 
and McKenzie 1987) and the spin-1 A N N N I  model which is reported in this paper. We 
hope to explain the method in somewhat more detail than has previously been reported. 

The method of ring recurrence provides a method of studying phase transitions on 
both Bethe and dimensional (Mckenzie 1981) lattices and is applicable to any model 
with a classical Hamiltonian. The method is formulated in terms of a discrete physical 
system (McKenzie 1981). This consists of a graph G, a set of localised states associated 
with each vertex V(G) of the graph and a potential related to the edges E ( G )  of the 
graph. The graph is the underlying space on which the system is embedded. The 
vertices of the graph are the physical entities (e.g. atoms). The edges indicate which 
atoms interact directly. 

A graph is shown in figure 2. In the thermodynamic limit the effect of the edges 
become negligible, and the graph becomes the simple quadratic lattice. The potential 
U is 

U = P H  u , + P J  2 u,u,+PJz 2 (+,U, . (1) 
Y E V ( G )  [I.\ ]E E ( G )  LCG 1 

The last term here indicates an interaction other than nearest neighbour. For example 
A = {x, y = x,  y E V ( G ) ,  d z ( x ,  y )  = 2) where dz is the graph metric in the z direction, 
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Figure 2. The ‘wedge’: (Y is the origin and rings are labelled as shown 
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then we have the A N N N I  model since we have included a second-neighbour coupling 
along the z axis. 

Each of the horizontal lines in figure 2 is a ‘ring’ of the graph, X ,  relative to the 
origin a E V( G )  where 

X e  = { x :  X E  V(G),  d ( x ,  a )  = s; s = 0 , 1 , 2 , .  . . }. 
C 1 e a r 1 y 

U X e  = V(G). 
T Z O  

The basic idea behind the method of ring recurrence is to build up the partition function 
in stages. CP is the state space of the system. C P = I I y E v i G l  where & = 11, - I}  for 
the spin-4 model or { + 1, 0, - l} for spin 1. 

Let R ,  be the state space associated with ring i .  Then 

R , =  fl 4v and CP=IIR, 
Y € X ,  

and let w ,  E 0,. 
Consider the interaction J ( w , ,  CO,), w ,  E R , ,  CO, E a,,, 

J ( w , , w , ) =  C jY+ 1 j,+ C j ,  
YEX,+,  e s E , , ,  P E E , , + ,  

where 

E, , ,  = { ( x ,  v ) ;  x, Y E  Xc+J 

c , 5 - ,  = {(x, Y ) ;  X E x,, Y E  Xr+l}. 

We see that there are contributions to J ( w , ,  w,)  from vertices in ring (s + I) ,  edges in 
ring (5 + 1) and the edges joining ring (s + 1) to ring (s). The partition function of a 
finite graph G, for which V (  G,) = can thus be written as 

We define normalised effective fields p5 by 

p y ( w y )  = C e”-,,w\+i’ CL,+,(w,+,) .  (3) 

This defines recursion relations for the p y .  The p7 is a partial partition function for 
that portion of the graph located further than s rings from the origin. The recurrence 
relations give us an iterative scheme to study the problem of phase transitions. For 
an infinite graph we choose an arbitrary value of s and iteration gives s - 1 and s - 2 . . . . 
The fixed point of the iteration represents what is happening ‘deep inside’ the lattice. 
For Bethe graphs the method is trivially exact (see for example McKenzie and Saqi 
1986). For two-dimensional graphs (figure 2 )  the method of ring recurrence produces 
a matrix recursion and an approximation must be introduced to obtain a finite iterative 
scheme. 

The effective fields pF for the graph in figure 2 can be expressed as a product of 
matrices. For the simple spin-i Ising model 

W,+I  

Pr = K,(a, , )A,(a, , , )A,((+e.2).  . . A,(~Y, ,*I)  

~s - i = K S -  1 ( a s -  i , I  1 As - i (a,- i , i  )As - i (as - 1.2) . . . As- i (a, - 1,s ). 
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The first subscript on the spin variable labels the ring and the second subscript labels 
the position of a spin along a ring. The K matrices are edge terms and are later 
neglected. There is a matrix recursion between the AT-l and A,. 

For the spin-; Ising model with nearest-neighbour interactions we have 

(4) 
x(g)  e'A,(l) x - ' ( g )  e-'A,(-l) 
x ( g )  e-'A,(l) x - ' ( g )  e'A5(-l) 

A A c - l ( ~ )  = 

where 

x ( a )  = exp( H + aJ) 

x - ' ( v )  = exp(-H - g.f) 

and A is a norm. 
The effective field is thus a product of matrices with a matrix associated with each 

vertex along the ring. There is a matrix recursion relating A y - l ( r )  for ring s - 1 to the 
equivalent matrix A , ( g )  for ring s. Clearly, we d o  not have a sensible renormalisation 
scheme since at each step the matrices get bigger-A,(g) is a (2x21, A r - l ( ~ )  is a 
(4 x 4) . . . , etc. Up to this stage, however, the formalism is exact. We note, however, 
the similarity between the matrix recursion and the recurrence relations of the Bethe 
graphs which are of the form 

P y - I  = f ( P r ) .  

To obtain a recurrence scheme the matrix recursion is reduced to a relation between 
scalars. The matrices A , (  u ~ , , )  are diagonalised and contributions to the product 
TIAS( rs,l)r involving the largest eigenvalues only are retained. 

Consider the product 

Diagonalising the A5(gS, , ) ,  

CL, = K ( g s . 1 )  n T ~ ( g ~ . , ) M ~ ( g , , , ) T ~ I ~ g ~ , , ) l  ( 6 )  
where T, is the matrix of eigenvectors and  M ,  is the matrix of eigenvalues. Equation 
(6) may be written as 

P,  = K ( g s , 1 )  T, (go )( fI Mi(g7.r) 7-x5) T (d) M , ( g , , , +  1 )  T;' ( f l i , S + I  1. ( 7 )  

Define T ; ' ( C ~ , , ) T ~ ( ~ \ , , ~ ~ )  as the matrix with elements a , , ( ~ ~ , ~ ,  Clearly for = 
us,,+l which corresponds to two adjacent spins in row s being in the same state, a,, = 1. 
Neglect edge terms and consider the product 

, = I  

PCL, = n M~(g~, , )T~ l~g~, , )T i (g~ , ,+1) .  
, = I  

Neglecting all smaller eigenvalues leads immediately to 

We see that p, is the product of scalars: 
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We can thus associate a parameter A , ( U ~ , , )  with each vertex in ring s and a parameter 
a , , ( a , , ,  uS,,LI) with each edge within the ring. 

The recursion relation (4), for the spin-; Ising model thus becomes in this approxi- 
mation 

We describe the u , , ( u ~ , , ,  a,.,,,) as the ring bond terms since they depend on the states 
of adjacent vertices in the same ring-ring s. 

We introduce the matrix of ring bond terms, B, with elements b,/ where 

b,J = a , l ( i , j )  (10) 

which refers to two adjacent vertices in a given ring that are in spin states i and j 
respectively. For the spin-; Ising model, i and j take values 1( = $1) and 2( = -1) 
only. For the q-state Potts models i and  j each takes values 1 , 2 , 3 , .  . . , q. Clearly 
from the definition of the ring bond terms, b,, = 1. 

The recursion relation is studied numerically by computing the matrices A(  U )  and 
their eigenvalues and  eigenvectors for arbitary initial values of A l ( a )  and  a l 1 ( c , ,  u , + ~ ) .  
The critical point T, is obtained from the behaviour of the fixed point p*. For T >  T,, 
p* = 1, whilst for T <  T,, p* = 1 becomes unstable and  the solution bifurcates at T = T,. 

For the spin-; A N N N I  model, the inclusion of the axial second-nearest-neighbour 
coupling groups the spins into pairs and forces us to consider the problem as a four-state 
model. A pair of spins (a,,,, u ~ + , , , )  can be in one of four possible states, namely ++, 
+ -, - +, - - and similarly for the adjacent pair ( u ~ , , + , ,  u ,+ , ,~ - , ) .  We label the four 
states by T which takes values 1 ,  2 ,  3, 4, and we define 

b,,, = all(.r,  = m, T,,, = n )  m, n = 1, . . . , 4  

where a , ,  is the leading diagonal element of T - ’ ( T , ) T ( T , ~ , )  where T - ’ A T =  M ( M  is 
the matrix of eigenvalues). 

Note that here T,  refers to the pair of spins (gCfl  ,us,,) and  refers to 

The recursion relation now involves matrices of order 4 and the recursion relation 
( ~ Y + I , , + l ,  (+c,t+,). 

analogous to equation (9)  is (Saqi and McKenzie, 1987) 

hT+lAST1(UI, 

r l  e3’Al(1, l ) b l l  r 2  e-’h,(l, - l ) b I 2  f 7  e-’h,(-l, l ) b 1 3  f4e-’Al(-l, - I ) b l 4  
tl eJAl(l ,  l )b2 ,  f?  e’A,(l, -1)b2? 1, e-”A,(-l, 1 ) h 3  f4eJA,(-1, - l )b24  
f ,  eJA,(l, l )b3 ,  r 2  e-3’A1(1, -1)b3? f 3  e’A,(-l, l)b,; f4eJA,i-1, - l)b34 
f l  eJAl(l ,  1)b4, f2e-’AI(1, -1)bd2 f, e-’A,(-l, l)b4, f4e”Al(-1, - l )bd4  

where U, E R , ,  a; E R,,, and 

r I (U, , U, ) = exp[ 2 H  + U, ( J 2  + J )  + U] J2] 

f z (  U,, q 1 = exp[a,  ( J 2  - J )  - u,JJ 

f3 ( U, , 0; 1 = exp[ U, ( J - J2 ) + J21 
f4( U,, U, ) = ex p[ - 2 H - U, ( J 2  + J ) - U] J 2 ] ,  
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We now outline the extension to the spin-1 case. The procedure follows exactly that 
for the spin-; case (Saqi and  McKenzie 1987) except that here we have a three-state 
model. 

As in the spin-f case, we have ferromagnetic nearest-neighbour couplings and  
antiferromagnetic second-nearest-neighbour coupling which acts only along one axis. 
We take the nearest-neighbour interactions along the x and z axes to be the same. 

The Hamiltonian for the Model is 

where V(G) is the vertex set, E ( G )  the edge set and  A = {x, y :  x, y E V (  G ) ,  d z ( x ,  y )  = 2 )  
where d,  is the metric in the z direction. The states a, take values - 1 ,  0, $ 1 .  

The inclusion of the axial second-nearest-neighbour coupling groups the spins into 
pairs and  turns the problem into a nine-state model. There are nine possible configur- 
ations for a given pair of spins (a,, a,) which we denote by 

1 [ + o - + o - i o  - 

+ + + o o o - - -  

and  which we label by r = 1 , 2 , .  . . ,9 .  
The method of ring recurrence allows the critical properties of a system with a 

classical Hamiltonian to be studied in terms of effective fields or partial partition 
functions, which are defined recursively. As stated earlier, in two dimensions, the 
effective fields are expressed as a product of matrices A ( a , ,  a,), or  A (  r )  and the method 
yields a matrix recursion relation. The matrix recursion is then reduced to a recursion 
between scalars; the matrices A(a, ,  a,) are diagonalised and  contributions to the 
product involving only the largest eigenvalues A , (  a), a,) are retained. The matrices 
are now of the order of 9. 

Following the iterative scheme described above, we define 

b , , = a l , ( T , = m , ~ , + l = n )  m , n = 1 , 2  , . . . ,  9 

where a , ,  is the leading diagonal element of T - ' A T  = M ,  the matrix of eigenvalues, 
and  r,, r, + 1 represent the states of two adjacent pairs of spins. The terms b,, represent 
the weight attached to transforming the configuration of a given spin pair n into the 
configuration m of the adjacent spin pair under the operation of the matrix A. We 
denote the matrix of terms b,,, by B. 

The recursion relations are studied numerically by computing the matrices A( 7 )  

and their eigenvalues and  eigenvectors, for arbitrary initial values of A , ( a , ,  a,) and  
b,,,,,. The critical point is obtained from the behaviour of the fixed point of the 
eigenvalues /\:(a,, a,). 

3. Results 

Our  phase diagram is shown in figure 3. We have characterised the phases by the 
behaviour of the normalised eigenvalues A * ( T ) ,  on iteration, where A *( r )  = A , (  T ) / A , (  l ) ,  
and  A , ( T )  is the largest eigenvalue of the matrix A ( T ) ,  and we have chosen as a norm 
A l ( 1 ) .  

Upon the iteration we find for J z  = 0, i.e. is with no axial second-neighbour coupling, 
the scheme reduces to the ordinary spin-1 k i n g  model as one expects. Clearly in the 
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Figure 3. The phase diagram for the Z D  spin-1 ANNNI model 

absence of an  axial second-neighbour coupling, the states T = 1, 2 ,  3, are equivalent, 
as are states ~ = 4 ,  5,  6, and ~ = 7 ,  8, 9. 

We find 

A*(7) = A*(4) = 1 

A*(7) # A*(4) # 1 

T >  T, 

T <  T, 

which define T,. 
As expected, the (9 x 9)  matrix of terms b,,,,, denoted by B, divides into blocks of 

size (3 x 3) with all the b,, in a block taking the same value. The blocks along the 
leading diagonal have all b,, = 1. For T <  T,, however, the off-diagonal blocks d o  
not go to zero in contrast to what we would expect by analogy with the spin-; Ising 
model. 

For J2 # 0 we find four phases. 
(i) The paramagnetic phase. Here we find points such that the eigenvalue associated 

with a given state T is equal to that associated with the complementary state T‘, which 
is obtained by interchanging + and - spins 

A * ( T ) = A * ( T ’ ) .  

Thus for example A*(3) = A*(7) where T =  3 is the state (T) and T = 7 is state (i). 
The b,, are such that 

b,, = b,.,,, 

where m‘, n ’  are complementary states to m, n. This means, for example, b,, = bs3, 
remembering that b,, = a , , ( m ,  n ) .  

(ii) The ferromagnetic phase. Here we find 

A *( 7) # A *( 7’) 

and in general all the eigenvalues converge to different fixed points. We find also 

b,, # b,,,,,,. 

(iii) The ‘+ + - -’ phase. The eigenvalues A *( T) iterate to a 2-cycle. However, as 
with the spin-4 A N N N I  model (Saqi and McKenzie 19871, each step in our iterative 
scheme takes into account two rows of the square lattice, and so the 2-cycle corresponds 
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to a + + - - phase. In this phase those b,, associated with a configuration that has 
an up ( + )  spin adjacent to a down ( - )  spin along the same row, are zero. thus for 
example b,, (corresponding to z!) and b18 (corresponding to <,) are both zero. This 
suggests that this phase is in fact a + + - - phase with two rows of predominantly 
‘up’ spins followed by two rows of mainly ‘down’ spins, but with the possibility of 
0-spin states occurring within a given row. Since the only interaction along a row 
(along the x axis in figure 1) is the ferromagnetic nearest-neighbour interaction, it 
would be energetically unfavourable for spins to align with a + spin adjacent to a - 
spin along a given row. 

(iv) The incommensurate phase. Here, the eigenvalues do not converge to a fixed 
point but describe an oscillatory chaotic-like behaviour. No regular behaviour has 
been found for the b,,, although the possibility of some long-period cyclic behaviour 
exists. 

The phase idagram in figure 3 was obtained by increasing the temperature for fixed 
values of - J z / J  and observing the behaviour of the eigenvalues on iteration. 

The phase diagram is generally similar to that of the spin-; A N N N I  model (Saqi 
and McKenzie 1987). The critical temperatures for a given competing strength -Jz/  J 
are lower than for the corresponding spin-f case. We observe that the effect found in 
our study of the spin-f A N N N I  model, whereby the phase boundary between the 
incommensurate and paramagnetic phases moves slightly to the left of the line - J 2 /  J = 
0.5 before returning to J 2 / J  = 0.5 as T decreases, is now more apparent. The error 
bars in figure 3 indicate the uncertainty in pinning down the phase boundaries. The 
lower points on the error bars indicate definite evidence for one phase and the upper 
points indicate the presence of the other phase. We find that, for values of - J 2 /  J ,  < 0.5, 
as the temperature is increased the phases change from ferromagnetic to paramagnetic, 
then to incommensurate and then to paramagnetic, and there are clear regions of 
incommensurate behaviour. We believe this to be a real effect and not an artefact of 
the method of ring recurrence. Incommensurate states are found to exist for - J 2 /  J as 
low as 0.45. Numerical evidence suggests that there is no multicritical point and that 
the paramagnetic phase extends down to T = 0, as was found with our study of the 
spin-: A N N N I  model. 

The phase boundaries are obtained by increasing the temperature for fixed values 
of - J z / J 1 ,  and observing the behaviour of the eigenvalues on iteration. Very near the 
phase boundary a longer time is required for convergence. The CPU time depends on 
how precisely the phase boundaries are located. The implementation of the method 
of ring recurrence to obtain the phase diagram in figure 3 took only a few hours on a 
VAX 11/750 computer. We finally observe that it would be straightforward to calculate 
the behaviour of the wavevector q (Vannimenus 1981) in the incommensurate phase 
using our iterative scheme. An accurate calculation of q would require large numbers 
of iterations and, due to the size of the matrices A (  T ) ,  would take considerably more 
computing than was needed for the spin-; A N N N I  model. 

We observe also that the method can be extended to the biaxial case, for which a 
real space renormalisation group study has recently been reported. (Aydin and Yalabik 
1989). Here we would group the spin in clusters of four and each state 7 would 
represent (U,,, ,  gSstl,,, U,,,,, , u ~ + ~ , , + ~ ) .  Hence the matrices A ( 7 )  would be of order 16. 
We expect interesting properties of the phase diagram to be revealed by such a study. 
The method of ring recurrence provides a useful way of investigating the phase diagram 
of fairly complex models and can be implemented without requiring excessive computer 
resources. 
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Appendix. Elements of the matrix A(u, ,  U,)  for the spin-1 AUNNI model 

We list below the elements of the matrix A(ak ,  a!). The system is described by a set 
of nine matrices, each of size (9*9) corresponding to the possible configurations. Let 
the elements of A ( a k ,  a,) be a,, ( a k ,  a!) and let a,, = z,(ak, a f ) a L  where 

5279 

z, = exp( H + ak ( J  + J 2  ) + af J J  exp(J)  

z2 = exp( H + ak:J,) 

zj  = exp( ak ( J2 - J )  - a&) exp( - J  1 
z4 = exp( H + uk J + a, J J  

zg = 1 

z6 = exp( - H a J  - a,JJ 

z7 = exp( -uk(J - J 2 )  exp( - J )  

zg = exp( - H  - aJ2) 

zg = exp(-2H - ak ( J  + J J  - afJJ 

and ak, a, can take values -1, 0, + l .  
The elements a ;  are given by the following matrix below: 

’ e2’ 
eJ 

e’ 

e-J 

e-’ 

1 

1 

1 

e’ 
e’ 
e’ 
1 
1 
1 

e-J 
e-’ 
e-’ 

1 
e’ 
e’’ 
e-’ 

e’ 

e-’ 

1 

1 

e’ 

e-J 
e’ 

e-’ 
e’ 

e-J 

1 

1 

1 

e-’ 

e’ 
e-’ 

e’ 
e-’ 

e’ 

1 

1 

1 

1 
e-’ 

e’ 

e-J 
e’’ 
e’ 

e-2J 

1 

1 

e-’ 
e-’ 
e-’ 

1 
1 
1 
e’ 
e’ 
e’ 

e-2J 

e-J 

e-’ 

e’ 

e’ 

1 

1 

1 

This defines the matrices A ( a k ,  a,), which we use in the iterative scheme to locate the 
critical points. 
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